本篇的主要参考文献:Mapping topological order in coordinate space。
陈数的定义公式如下,可参考这篇:陈数Chern number的计算(定义法,附Python/Matlab代码)。
![]()
通过转换可写成以下这个形式。可参考这篇的前半部分:陈数Chern number的计算(Kubo公式,附Python代码)。
![Rendered by QuickLaTeX.com \[C=-\frac{1}{\pi} \mathrm{Im} \sum_{n=1}^{N_c}\int_{T^2} d\mathbf{k} \left\langle \frac{\partial }{\partial k_x} u_{n\mathbf{k}} \middle| \frac{\partial }{\partial k_y} u_{n\mathbf{k}} \right\rangle\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-3d78fb3f2dd78254ecf4654bfaae6bb1_l3.png)
其中,
是占据态的能带数量。
插入单位算符后得到:
![Rendered by QuickLaTeX.com \[C = -\frac{1}{\pi} \text{Im} \sum_{n=1}^{N_c} \sum_{n' = 1}^{\infty} \int_{\text{BZ}} d\mathbf{k} \, \left\langle \frac{\partial u_{n\mathbf{k}}}{\partial k_x} \middle| u_{n'\mathbf{k}} \right\rangle \left\langle u_{n'\mathbf{k}} \middle| \frac{\partial u_{n\mathbf{k}}}{\partial k_y} \right\rangle\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-6935e287227e3c0df0d93b45fed6bb7b_l3.png)
接下来详细考虑
中的每一项。
当
时,有(第一个等号是顺序交换;第二个等号是复数共轭):
![Rendered by QuickLaTeX.com \[\begin{aligned} \left\langle \frac{\partial u_{n\mathbf{k}}}{\partial k_x} \middle| u_{n\mathbf{k}} \right\rangle \left\langle u_{n\mathbf{k}} \middle| \frac{\partial u_{n\mathbf{k}}}{\partial k_y} \right\rangle &=\left\langle u_{n\mathbf{k}} \middle| \frac{\partial u_{n\mathbf{k}}}{\partial k_y} \right\rangle \left\langle \frac{\partial u_{n\mathbf{k}}}{\partial k_x} \middle| u_{n\mathbf{k}} \right\rangle \\& =\left( \left\langle \frac{\partial u_{n\mathbf{k}}}{\partial k_x} \middle| u_{n\mathbf{k}} \right\rangle \left\langle u_{n\mathbf{k}} \middle| \frac{\partial u_{n\mathbf{k}}}{\partial k_y} \right\rangle \right)^*\end{aligned}\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-186052452ca40d10b07d6083d1b51bc1_l3.png)
所以
这一项是实数,不贡献值,可扔掉。
当
时, 有
,所以
,展开得到:
![Rendered by QuickLaTeX.com \[\left\langle \frac{\partial u_{n\mathbf{k}}}{\partial k_j} \middle| u_{n'\mathbf{k}} \right\rangle = - \left\langle u_{n\mathbf{k}} \middle| \frac{\partial u_{n'\mathbf{k}}}{\partial k_j} \right\rangle\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-cd872e4659563dd99e71d242ec23c377_l3.png)
对于
,
,在求和
中的表达式
都对应的
,
项。这里把这两个对应项写在一块,并取虚数(第一个等号用到上面的等式替换,两个负号相互抵消;第二个等号用上厄密共轭的缩写):
![Rendered by QuickLaTeX.com \[\begin{aligned} & \mathrm{Im} \left( \left\langle \frac{\partial u_{n_1\mathbf{k}}}{\partial k_x} \middle| u_{n_2\mathbf{k}} \right\rangle \left\langle u_{n_2\mathbf{k}} \middle| \frac{\partial u_{n_1\mathbf{k}}}{\partial k_y} \right\rangle + \left\langle \frac{\partial u_{n_2\mathbf{k}}}{\partial k_x} \middle| u_{n_1\mathbf{k}} \right\rangle \left\langle u_{n_1\mathbf{k}} \middle| \frac{\partial u_{n_2\mathbf{k}}}{\partial k_y} \right\rangle \right)\\=& \mathrm{Im} \left( \left\langle \frac{\partial u_{n_1\mathbf{k}}}{\partial k_x} \middle| u_{n_2\mathbf{k}} \right\rangle \left\langle u_{n_2\mathbf{k}} \middle| \frac{\partial u_{n_1\mathbf{k}}}{\partial k_y} \right\rangle + \left\langle u_{n_2\mathbf{k}} \middle| \frac{\partial u_{n_1\mathbf{k}}}{\partial k_x} \right\rangle \left\langle \frac{\partial u_{n_1\mathbf{k}}}{\partial k_y} \middle| u_{n_2\mathbf{k}} \right\rangle \right)\\= &\mathrm{Im} \left( \left\langle \frac{\partial u_{n_1\mathbf{k}}}{\partial k_x} \middle| u_{n_2\mathbf{k}} \right\rangle \left\langle u_{n_2\mathbf{k}} \middle| \frac{\partial u_{n_1\mathbf{k}}}{\partial k_y} \right\rangle + \text{c.c.} \right)\\=& 0\end{aligned}\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-3b6aedf4582c9c43fec31d20012f45df_l3.png)
所以陈数的表达式可以写为:
![Rendered by QuickLaTeX.com \[C = -\frac{1}{\pi} \mathrm{Im} \sum_{n=1}^{N_c} \sum_{n' = N_c+1}^{\infty} \int_{\text{BZ}} d\mathbf{k} \, \left\langle \frac{\partial u_{n\mathbf{k}}}{\partial k_x} \middle| u_{n'\mathbf{k}} \right\rangle \left\langle u_{n'\mathbf{k}} \middle| \frac{\partial u_{n\mathbf{k}}}{\partial k_y} \right\rangle\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-4c4349b2d6a5cbb0a0d51bc60eb483f5_l3.png)
电子波函数:
,于是电子波函数的周期部分可以写为
,所以有:
![]()
所以陈数可以表达为:
![Rendered by QuickLaTeX.com \[C = -\frac{1}{\pi}\text{Im}\sum_{n=1}^{N_c}\sum_{n'=N_c+1}^{\infty}\int_{BZ} d\mathbf{k} \langle\Psi_{n\mathbf{k}}|\hat{x}|\Psi_{n'\mathbf{k}}\rangle\langle\Psi_{n'\mathbf{k}}|\hat{y}|\Psi_{n\mathbf{k}}\rangle\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-c10f89caa8434e64e4f58250b62176ac_l3.png)
进一步推导(目的是把
变成
):

其中,用到单位算符:
![Rendered by QuickLaTeX.com \[1 = \frac{A_c}{(2\pi)^2} \sum_{n=1}^{\infty} \int_{BZ} d\mathbf{k} |\Psi_{n\mathbf{k}}\rangle \langle\Psi_{n\mathbf{k}}|\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-e86b41b8ac494b30ff945fd56e783f64_l3.png)
为元胞的面积。
继续推导(目的是把求和延展到无穷大,这里是
):
![]()
其中,用到归一化公式:
![Rendered by QuickLaTeX.com \[\frac{A_c}{(2\pi)^2} \int_{BZ} \mathrm{d}\mathbf{k} \, \delta(\mathbf{k}) = 1\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-7a3c34f2f9a8a915a6d2b83063b1817e_l3.png)
![Rendered by QuickLaTeX.com \[\frac{A_c}{(2\pi)^2} \sum_{n''=1}^{\infty} \int_{BZ} \mathrm{d\mathbf{k''}} \langle\Psi_{n''\mathbf{k''}}|\Psi_{n\mathbf{k}}\rangle = 1\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-8245e19020d8fdd724326bc70a1e3577_l3.png)
继续推导(符号替换,简化表达式。其中第二个等号用到上面的归一化公式;第三个等号用到迹的循环性质,可证明Pxy项为实数):
![Rendered by QuickLaTeX.com \[\begin{aligned} C &= -\frac{1}{\pi} \text{Im} \sum_{n''=1}^{\infty} \int_{BZ} d\mathbf{k}'' \langle\Psi_{n''\mathbf{k}''} | \hat{P}\hat{x}\hat{Q}\hat{y} | \Psi_{n''\mathbf{k}''}\rangle \\ &= -\frac{1}{\pi} \frac{(2\pi)^2}{A_c} \text{Im} \, \text{Tr}_{\text{cell}} \left(\hat{P}\hat{x}\hat{Q}\hat{y}\right) \\ &= \frac{4\pi}{A_c} \text{Im} \, \text{Tr}_{\text{cell}} \left(\hat{P}\hat{x}\hat{P}\hat{y}\right) \\&= \frac{1}{A_c} \text{Tr}_{\text{cell}} \left(\hat{\mathcal{C}}\right)\end{aligned}\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-ca8e94983f81a8b031a269c11490d9ec_l3.png)
其中,表达式中的符号定义如下:
![Rendered by QuickLaTeX.com \[P = \frac{A_c}{(2\pi)^2} \sum_{n=1}^{N_c} \int_{BZ} d\mathbf{k}|\psi_{n\mathbf{k}}\rangle\langle\psi_{n\mathbf{k}}|\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-bab7c0751f800e6ac5c73ba36f5c9ea8_l3.png)
![Rendered by QuickLaTeX.com \[Q = \frac{A_c}{(2\pi)^2} \sum_{n'=N_c+1}^{\infty} \int_{BZ} d\mathbf{k}'|\psi_{n'\mathbf{k}'}\rangle\langle\psi_{n'\mathbf{k}'}|\]](https://www.guanjihuan.com/wp-content/ql-cache/quicklatex.com-c911c1de8bb16fc28b7e9d923eae2f83_l3.png)
![]()
![]()
局域陈指标(Local Chern marker)定义为:
![]()
表达式通常也写为[1]:
![]()
代码实现例子参考这篇:实空间拓扑不变量(local Chern marker)的Python代码实现例子。
参考资料:
[1] Mapping topological order in coordinate space
[2] Local Chern Number for Noninteracting Fermions in the Harper-Hofstadter Model, Bachelor’s Thesis.
【说明:本站主要是个人的一些笔记和代码分享,内容可能会不定期修改。为了使全网显示的始终是最新版本,这里的文章未经同意请勿转载。引用请注明出处:https://www.guanjihuan.com】
“继续推导(符号替换,简化表达式。其中第二个等号用到上面的归一化公式;第三个等号用到迹的循环性质,可证明Pxy项为实数)”,第一个等式似乎不能通过(n或k)符号替换插入P,Q算符,因为y部分对应的右矢是\ket{n,k}。不知道是不是我理解错了qaq。
这个表达式前面的式子有一项 \langle\Psi_{n''\mathbf{k}''} | \Psi_{n\mathbf{k}}\rangle ,由于正交归一性,所以当 \ket{n,k} 和 \ket{n'',k''} 是相同的时候,整个项才不会为零。