Python专题, 语言

np.linalg.eig和np.linalg.eigh的区别

np.linalg.eig文档:https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html

np.linalg.eigh文档:https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html

1. np.linalg.eig

Compute the eigenvalues and right eigenvectors of a square array

特点:

(1)可以计算任意矩阵的特征值和特征向量。

(2)特征值没有按大小排序,需自行根据实部排序。

(3)对于相同特征值的情况,得到的特征向量不相互正交,甚至不线性无关。

2. np.linalg.eigh

Return the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.

特点:

(1)计算厄密矩阵或实对称矩阵的特征值和特征向量,即特征值一定为实数。

(2)特征值已按大小排序,从小到大。

(3)对于相同特征值的情况,得到的特征向量相互正交。

3. 结论

在已知是厄密矩阵(包括实对称矩阵)的情况下,最好使用np.linalg.eigh,可以避免相同特征值对应的特征向量线性相关和不正交的情况,同时特征值也经过了排序。

4. 代码测试

"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/17789
"""

import numpy as np

def hamiltonian(width=2, length=2):
    h00 = np.zeros((width*length, width*length))
    for i0 in range(length):
        for j0 in range(width-1):
            h00[i0*width+j0, i0*width+j0+1] = 1
            h00[i0*width+j0+1, i0*width+j0] = 1
    for i0 in range(length-1):
        for j0 in range(width):
            h00[i0*width+j0, (i0+1)*width+j0] = 1
            h00[(i0+1)*width+j0, i0*width+j0] = 1
    return h00

print('矩阵:\n', hamiltonian(), '\n')

eigenvalue, eigenvector = np.linalg.eig(hamiltonian())
print('eig求解特征值:', eigenvalue)
print('eig求解特征向量:\n',eigenvector)
print('判断特征向量是否正交:\n', np.dot(eigenvector.transpose(), eigenvector))

print()

eigenvalue, eigenvector = np.linalg.eigh(hamiltonian())
print('eigh求解特征值:', eigenvalue)
print('eigh求解特征向量:\n',eigenvector)
print('判断特征向量是否正交:\n', np.dot(eigenvector.transpose(), eigenvector))

计算结果:

可以看出用eig求解时,特征值没有排序,且特征值相同时,无法得到线性无关和相互正交的特征向量。

967 次浏览

【说明:本站主要是个人的一些笔记和代码分享,内容可能会不定期修改。为了使全网显示的始终是最新版本,这里的文章未经同意请勿转载。引用请注明出处:https://www.guanjihuan.com

评论说明:
(1)在保留浏览器缓存的前提下,目前支持72小时自主修改或删除个人评论。如果自己无法修改或删除评论,可再次评论或联系我。如有发现广告留言,请勿点击链接,博主会不定期删除。
(2)评论支持Latex公式。把latexpage作为标签放在任何位置,评论中的公式可正常编译,示例:
$Latex formula$  [latexpage]

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注