Chapter 4

Green’s function formalism

Having a numerical representation of the system in terms of a tight-bindinglmode
one still needs a mathematical framework within which different physicalgro
ties can be calculated. Green'’s functions can be a valuable tool in thecte§me

of their advantages is the relative ease with which they can be calculategdaoed

to a direct numerical solution of the Séldinger equation. In particular, a very ef-
ficient recursive method is available for obtaining the Green'’s functiecsssary
for the evaluation of the transmission coefficients in the Landauigtiker formal-

ism [2, 31]. This method will be discussed in some detail in the current ahapte
where parts of the discussion will follow Refs. [2, 31]. We will also shawho
extend this standard recursive technique, allowing for an extra seteeinG func-
tions to be calculated with the same high efficiency. With this larger set of Green
functions, a wider range of physical properties comes in our reatlit, will also
allow us to do certain calculations in the next chapters more efficiently.

4.1 Green’s functions: The basics

In quantum physics, the single-particle Green’s function opel@{dt) of a sys-
tem described by a Hamiltonia can be defined as the solution to the operator
equation [2, 31, 46]

[E—-H]G(E) =1, (4.1)

A formal solution to this equation would be given BYE) = (E — H)~'. How-

ever, such a solution is not well defined for valuediaforresponding to the eigen-
values of the Hamiltonian. This subtlety can be appreciated more when going to
the position-spin representation of Eq. (4.1):

[E-H(x)|] G(x,x,E) =6(x—x'). (4.2)

The vectorx contains both the position and spin variables= (r, o), and the
function
G(x,x, E) = (x|G(E)[x) (4.3)
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is called the Green’s function of the system. From Eq. (4.2), it can betbagn
the Green'’s function can be considered as a wavefunctipmesulting from a unit
excitation atr’. But on the other handy can also be considered as the source for
such an excitation. Both solutions satisfy Eq. (4.2), but they corresjoatitferent
boundary conditions: iff would be the Hamiltonian for a particle moving in a
constant potential, then the first solution would correspond to an outgaing w
from the pointr’, while the second solution would be an incoming wave. In order
to incorporate such boundary conditions into a unique definition for therGre
function, one adds an infinitesimal imaginary variable into the energy, whidisle
to the following definitions:

G*(x,x,E) = lim+ G(x,x', E +in), (4.4)
n—0

where the function&'* satisfy
[E+in— H(x)] GF(x,x,E) = §(x — x). (4.5)

The functionsG™ andG~ are called respectively the retarded and advanced Green'’s
function. In the example given above, the retarded Green'’s functiatdwmrre-
spond to the outgoing wave and the advanced Green’s function to the irgomin
wave. More generally, when Fourier transforming the functiGisto the time
domain using a closed contour integration in the complex plane, they woulel corr
spond to causal and anticausal solutions [47].

In the operator language, the retarded and advanced Green’s fuapgoators
are defined uniquely for all real values Bfby the relation

G*(E) = lim _ (4.6)
n—0t F+in— H
and they can thus essentially be calculated by inverting the Hamiltonian.

In the next sections, we will stop writing the hat ¢4 to denote an opera-
tor. It will be clear from the context wheth&r stands for a function (or a ma-
trix in a discrete system) or an operator. We will also drop the substrifar
distinguishing between the retarded or advanced Green’s funatonill always
stand for a retarded Green’s function. From Eq. (4.6), it is clear tleaddvanced
Green's function corresponds to the hermitian conjugate of the retarded.e.,

G~ = (GNH =G,

4.2 Transmission coefficients and the Green’s function

In the Landauer-Bttiker formalism presented in Chap. 2, a central device is con-
nected to perfect leads, and its current-voltage characteristics caqpiassed in
terms of transmission coefficients between those leads. These transmassfion ¢
cients can be related to the Green’s function of the central device, thieislifying

the effort we will make in the next sections to find this Green’s function. \We w
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suffice with merely stating this relation here, since it is standard nowadagls, a
since a thorough derivation would take us too'fam a tight-binding represen-
tation of the system, the transmission coefficient between lgasl ¢ is given
by [2, 49]:

Ty = T1[TyGpaTyGly | (4.7)

The Green’s functiordr,, in this expression is a submatrix of the Green'’s function
G of the whole system: it contains only the elementgsobetween sites in the
central device that connect to legadgindgq: in particular, if P, is a projection
operator onto the sites of the central device to which je&g is connected, then

Gpg = PpGPy. (4.8)

The matrixI', in Eq. (4.7) is the so-called broadening function of Igadt is
given in terms of what is known as the self-enekgyof the lead:

I, =i(3, - ). (4.9)

This self-energy is related to elements of the Green'’s function betweerasites
surface of the lead. The exact definition, and a more detailed discudsibese
self-energies will be given in the next section [see Eq. (4.13].

4.3 Lattice Green'’s function method

One could have the impression that all has been said already about the'sGre
function technique: one just derives the tight-binding Hamiltonian of the syste
writes it out in matrix form, and calculates the Green’s function by inverting the
matrix £ + in — H. Physical quantities, like the transmission coefficients of the
Landauer-Bittiker formalism, can then be calculated by expressing them in terms
of this Green'’s function.

However, since we are concerned with an open system (there are seitaiinfi
leads connected to the sample), the tight-binding Hamiltonian matrix describing the
complete system has infinite dimension and cannot be inverted numericalty. Fur
thermore, even if one is able to truncate the Hamiltonian matrix, its direct inversion
turns out to be numerically very expensive. These issues will be addtés the
current section. During the discussion, we will use quite often the notétjgnto
denote a submatrix of the total Green’s function maf¥ixG,,,, “connects” sites
of columnsn andr’, i.e.,

(m,o|Gpw (E)m, 0" ) = Gumonmio (E) = (nmo|G(E)n'm'c"),  (4.10)

where(m, n) label the sites in the tight-binding lattice, ands’ are the spin in-
dices.

1The interested reader can find such a derivation in Ref. [48].
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Figure 4.1: The influence of a lead can be described by adding its selfygrie the
Hamiltonian of the device.

4.3.1 Semiinfinite leads: Self-energy description

Within the Landauer-Bttiker formalism, the system is composed of a central de-
vice connected to leads (see Fig. 2.1), and its Hamiltonian can therefoubdie s
vided as:
H=Heq+ Y (H +Vi+ Vi) (4.11)
7

H,., is the Hamiltonian for the central device, arﬁq' the Hamiltonian for lead
7. The coupling between lead and device is describedflgy(and its hermitian

conjugateV;). A direct inversion[E + in — H]| ~! to obtain the Green’s function
is numerically impossible, since eveH} has infinite dimension.

The standard way to resolve this problem consists of describing the lead in-
fluence by a self-energy term: it can be shown (see, e.g., Refs. [Rth3t the
central device, including the influence of the leads on it, is describedfinyte:
dimensionaHamiltonian

Heg = Heg + > _ X, (4.12)

whereX’ is called the (retarded) self-enefgyf lead::
X' = Vi g Vi (4.13)

The quantitwf in this expression is the Green’s function of the isolated semiinfinite
lead:g! = [E + in — Hj]~1. Atfirst sight it seems that the problem is just shifted,
since now the calculation gf will involve the inversion of the infinite-dimensional
Hamiltonian H;. However, since a nearest-neighbor tight-binding model is used,
the matrices/;, andV}; have nonzero elements only between sites on the surface
of the lead and their neighboring sites in the device. This means that only the
surface Green’s functiongl"()n is needed in Eg. (4.13) (see also Fig. 4.1), and

2In many-body physics, self-energy terms are sometimes introduagestibe coupling of the
system to phonons or to describe many-body interactions [47]. In tasss, the self-energies are
usually only calculated up to some order in perturbation theory, so thatiméltdnian one obtains is
only an approximation. However, in our case the truncation of the deaceilkbnian by describing
the influence of the leads by their self-energies is exact: no approxirmatioatsoever are made.
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Figure 4.2: Attaching two isolated sections with Dyson’s equation ttedbGreen’s
functions for the connected system.

the point is that several methods are at our disposal for calculating tesnGr
function: in the absence of a magnetic field it is known analytically [2], while
in the case of a magnetic field one can resort to several numerical metem]s (
e.g., Refs. [50, 51]). The particular method we have used will be explame
Appendix B, in order not to drown the reader into a too dense technicalstison
at this point.

Now, if the central device compris&s lattice sites, the Hamiltoniaf. in
Eq. (4.12) can be represented bg@ x 2C matrix (the factor 2 arises from spin)
and the corresponding Green'’s function can in principle be obtained fro

Gea = [E +in— Hea) (4.14)

Nevertheless, the number of floating point operations necessary to a®ey x

2C matrix scales a$2C)3, and therefore the inversion in Eq. (4.14) puts heavy
constraints on the numerically reachable system size. Fortunately, maiergffi
recursive methods exist for obtainirdg.;, and these will form the subject of the
next sections.

4.3.2 Recursive technique: Standard method

Recursive methods for the evaluation of Green’s functions are bgsedthe di-
vision of the device in smaller sections of which the Green’s functions caalbe
culated easily. These sections are then “glued together” by using thalled-c
Dyson’s equation [47],

G=g+gVQG, (4.15)

which allows to relate the Green’s functignof two disconnected subsystems to
the Green'’s functiorty of the connected system, where V describes the hopping
between the subsystems.

Before embarking upon a detailed discussion of the recursive Griegirson
technique, we will illustrate the use of Dyson’s equation with an example, téebic
in Fig. 4.2. Consider a system consisting of two parts, and suppose tHawee
access to the Green’s functigrlescribing thésolatedparts. Now we would like to
obtainGy1, i.e., elements of the Green'’s function between the first and last column
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of thecoupleddevice. This can be done by projecting Eq. (4.15) between columns
N and1:

Gn1 = (N|G|1) (4.16a)

= (Nlglt)+ Y (Nlgla)(a|V|B)(BIG|L)  (4.16b)
[e),18)

= (Nlgln)(n|Vin+1)(n+1|G|1) (4.16c¢)

= JNn Vn,n+1 Gn+1,1~ (416d)

Equation (4.16c¢) is obtained by noting that the hopping matrixetween the dis-
connected systems has only nonzero elements between coluamas: + 1 in our
nearest neighbor tight-binding model. Furthermore, we lgame= 0 sinceg is for
the disconnected system only. We can proceed now to find the unk@wn; in
Eqg. (4.16d) by taking again the appropriate matrix elements of Dyson’diequa
This procedure can be continued until we have found a closed setafiens. We
immediately write down the resulting equations:

Grnt11 = ntin+1 Varin Gni,  With (4.17a)
Gnl = gnl t Gnn Vn,nJrl Gn+1,1- (4l7b)

From these equations, we obtain:

-1
Gn+1,1 =|1- In+1,n+1 Vn+1,n dnn Vn,n+1 In+1,n+1 Vn—i—l,n gnl- (418)

Substituting this in Eqg. (4.16d), we will get an expression &y in terms of
Green’s functions for the isolated sections, which was our initial goal.

We now have enough technical luggage to proceed to the recursien'&re
function technique [31, 52]. In the following, we will consider a centealide dis-
cretized on a rectangular tight-binding lattice consisting/ofows andV columns
(Fig. 4.3). The influence of the leads that are attached to this centrakdeilibe
described by their self-energy, giving rise to a finite-dimensional HamiltoHig
for the device, as discussed in the preceding section. It will be assuraedlth
leads are attached at the left and right edges of the central device sodinaself-
energies only influence sites of the first and last column of the devicec{ddp
gray in the figures). If this would not be the case, self-energy terms auwoduce
an effective hopping between lattice columns that are not nearest oesglaind in
this case the recursive technique cannot be applied: in the example &baveild
have nonzero contributions between columns different froamdn + 1, leading
to much more complicated expressions in Eq. (4.16c).

A wide range of physical quantities of such a system can be written in terms of
the small subset of Green’s function matrices that is depicted in Fig. 4. hdecos
elements of the Green'’s function between the first/last column of the devdangn
intermediate column. The first step towards calculating these consists cdisega
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Figure 4.3: Subset of device Green'’s functions needed for calculatiegphysical
guantities of interest. Leads attached to the central deasie depicted in gray.

the device in isolated columns, and calculating the Green'’s funcifithfor every
isolated column = 1,2, ..., N by doing a direct inversion:

G = | E +in — (i|Heali)| (4.19)

where(i|H.q|i ) is the tight-binding Hamiltonian of columin This step is depicted
in Fig. 4.4(a).

The next step consists of assembling the complete device by gluing together
the columns one by one, as shown in Fig. 4.4(b). Suppose we alreadytheav
Green's functionsz%,, G¥, G of a strip ofn columns connected together. The
superscriptL is added to denote the fact that they only represent a part of the de-
vice (namely a strip of: columns), not the whole device. The Green’s functions
Gly11, Gl andGh,  for asection o + 1 columns can then be derived
by projecting Dyson’s equation [Eqg. (4.15)] between the appropridtevts, in a
similar way to what has been done in the simple example discussed above. We will
only state the end result here:

. 1

GEtnn = [1-G  Vai1n G Vi | G941, (4.20a)
G7LL+1,1 = G7LL+1,n+1 Vitin Gﬁ,p (4.20b)
an—i—l = an Vn,n+1 G7Ll+1,n+1~ (4.20C)

Starting from the leftmost columim = 1 with Gfl = Gifg', one can proceed in this
way through the whole sample and calculate®g, G¥, andGL, for all n. After
connecting the last column, one obtains the Green’s function submatges=
Gn1 andGlLN = (1 connecting the first and last column of the complete device.
These steps complete tisgandardrecursive Green’s function method [31, 52],
and they suffice for describing transport quantities within the LandBu#iker
formalism. Indeed, all leads are connected to the left or right edge ofyttens,
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Figure 4.4: Standard recursive technique. The device is divided irgsdparate
columns (a), and Dyson’s equation is used to glue them tegetid to find the rele-
vant Green'’s functions (b).

and the relation in Eq. (4.7) thus expresses the transmission coefficientsigndae
the Green'’s function&' 1 or G-

Looking back at the Egs. (4.19)-(4.20), one can see that the compaation
erations necessary for obtaining the final Green’s functions are gitbducts or
inversions o2M x 2M matrices, and the total amount of such operations is pro-
portional the lengthV of our system. Since the computational effort for a matrix
product or inversion scales &)/ )3 in the number of floating point operations, the
total numerical effort for the recursive technique scaled/dsV for large systems
(N > 1). In this way, we gain a factor a¥? in efficiency compared to the direct
inversion of the complet@M N) x (2M N) matrix E + in — H.q, which scaled
asM3N3. The price one has to pay for the increased efficiency is that one can
only calculate a smaller subset of Green’s functions (direct inversiamdagive us
Gy forall n,n').

4.3.3 Recursive technique: An extension

We have extended the standard recursive technique in order to obtaitditienal
Green's function& y,, Gnn, Gn1, G1n andG,,, depicted in Fig. 4.3. Having such
functions available will prove to be convenient in the next chapters.

We proceed as follows. After having completed the standard techniqstame
over from the Green'’s functions of the isolated columns, and glue therthtges
we did previously on the basis of Dyson’s equation, but now beginnimy the
right column. This is depicted in Fig. 4.5(a). The Green’s functions weutztke
with every step ar&® | Gt andGZ,. They can be given in terms of tiie

,n+1
Glp1ngr @NAGY,  as:
R isol R 1 Lisol
Gnn = 1-— Gnn Vn,n—i—l Gn+1,n+l Vn+1,n Gnn? (4218.)
GEy = GE Vonn GEy. (4.21¢)

Starting fromG%, = G¥°, one can obtailGE , GF, andGE, for all n =

26



@) (b)

G:x:ﬂ Gi‘,rﬁrl :G:+1,N ng’GEN Glr;l,G]{n GI;,n+l 3G];,ﬂ+1 Gnl,Glﬂ G'Vn aGnN
N v ¥ v v v v v v v w v
+ —— + ——
RB BR ? B R B
Gn+1,n+1 Gnn Gnn Gn+1,n+ 1 Glm

Figure 4.5: Extension of the standard recursive technique. The igbledimns are
glued together, but now starting from the righthand sideTag final step consists of
adding these strips of columns to the ones calculated idHg(b).

N —1,N —2,...,1. Again, the superscrip® has been added to denote that these
are Green'’s functions for a subsection of the complete device.

The final step consists of attaching the previously calculated Greercsdnr
G' and G% in pairs, as illustrated in Fig. 4.5(b). One attaches a strip of con-
nected columng to n (with known Green’s functiongZ; andGL,) to the strip
of columnsn + 1 to N (with Green's functionsz ¥ |, andG%,, ), and this
is done for alln = 1,..., N. Again, projection of Dyson’s equation leads to the
relevant mathematical expressions:

-1
Gnl = |:1 - Gﬁn Vn7n+1 G§+1,n+l Vn—&-l,n} Gﬁl? (422&)
Gin = an + G%n Vn,n+1 GnR+1,n+1 Vn—l—l,n Gnns (422b)
-1
Gon = [1 — GE V1 G VM,”} GL (4.22¢)
Gnn = G¥ i1 Vot Gon, (4.22d)
Gon = GunVans1GEL N (4.22¢)

Both these additional steps consist of doing a number of matrix multiplications
and inversions that scales linear M. The numerical computation of the extra
Green’s functions with our extended recursive method thus has the $iigreney
as the standard technique.

Having access to these extra Green’s functions will prove to be veryeeon
nient in the following chapters: it will allow us to obtain quantities like the current
density distribution, and furthermore, certain calculations can be done weigtey
efficiency than with the standard Green’s functigfg; andGy alone.
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