
Chapter 4

Green’s function formalism

Having a numerical representation of the system in terms of a tight-binding model,
one still needs a mathematical framework within which different physical proper-
ties can be calculated. Green’s functions can be a valuable tool in this respect. One
of their advantages is the relative ease with which they can be calculated, compared
to a direct numerical solution of the Schrödinger equation. In particular, a very ef-
ficient recursive method is available for obtaining the Green’s functions necessary
for the evaluation of the transmission coefficients in the Landauer-Büttiker formal-
ism [2, 31]. This method will be discussed in some detail in the current chapter,
where parts of the discussion will follow Refs. [2, 31]. We will also show how to
extend this standard recursive technique, allowing for an extra set of Green’s func-
tions to be calculated with the same high efficiency. With this larger set of Green’s
functions, a wider range of physical properties comes in our reach, but it will also
allow us to do certain calculations in the next chapters more efficiently.

4.1 Green’s functions: The basics

In quantum physics, the single-particle Green’s function operatorĜ(E) of a sys-
tem described by a Hamiltonian̂H can be defined as the solution to the operator
equation [2, 31, 46] [

E − Ĥ
]
Ĝ(E) = 1, (4.1)

A formal solution to this equation would be given bŷG(E) = (E − Ĥ)−1. How-
ever, such a solution is not well defined for values ofE corresponding to the eigen-
values of the Hamiltonian. This subtlety can be appreciated more when going to
the position-spin representation of Eq. (4.1):

[
E −H(x)

]
G(x,x′, E) = δ(x − x′). (4.2)

The vectorx contains both the position and spin variablesx = (r, σ), and the
function

G(x,x′, E) = 〈x|Ĝ(E)|x′ 〉 (4.3)
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is called the Green’s function of the system. From Eq. (4.2), it can be seenthat
the Green’s function can be considered as a wavefunction atr resulting from a unit
excitation atr′. But on the other hand,G can also be considered as the source for
such an excitation. Both solutions satisfy Eq. (4.2), but they correspondto different
boundary conditions: ifH would be the Hamiltonian for a particle moving in a
constant potential, then the first solution would correspond to an outgoing wave
from the pointr′, while the second solution would be an incoming wave. In order
to incorporate such boundary conditions into a unique definition for the Green’s
function, one adds an infinitesimal imaginary variable into the energy, which leads
to the following definitions:

G±(x,x′, E) ≡ lim
η→0+

G(x,x′, E ± iη), (4.4)

where the functionsG± satisfy
[
E ± iη −H(x)

]
G±(x,x′, E) = δ(x − x′). (4.5)

The functionsG+ andG− are called respectively the retarded and advanced Green’s
function. In the example given above, the retarded Green’s function would corre-
spond to the outgoing wave and the advanced Green’s function to the incoming
wave. More generally, when Fourier transforming the functionsG± to the time
domain using a closed contour integration in the complex plane, they would corre-
spond to causal and anticausal solutions [47].

In the operator language, the retarded and advanced Green’s function operators
are defined uniquely for all real values ofE by the relation

Ĝ±(E) ≡ lim
η→0+

1

E ± iη − Ĥ
, (4.6)

and they can thus essentially be calculated by inverting the Hamiltonian.
In the next sections, we will stop writing the hat in̂G to denote an opera-

tor. It will be clear from the context whetherG stands for a function (or a ma-
trix in a discrete system) or an operator. We will also drop the subscript± for
distinguishing between the retarded or advanced Green’s function:G will always
stand for a retarded Green’s function. From Eq. (4.6), it is clear that the advanced
Green’s function corresponds to the hermitian conjugate of the retarded one, i.e.,
G− = (G+)† ≡ G†.

4.2 Transmission coefficients and the Green’s function

In the Landauer-B̈uttiker formalism presented in Chap. 2, a central device is con-
nected to perfect leads, and its current-voltage characteristics can be expressed in
terms of transmission coefficients between those leads. These transmission coeffi-
cients can be related to the Green’s function of the central device, thereby justifying
the effort we will make in the next sections to find this Green’s function. We will

20



suffice with merely stating this relation here, since it is standard nowadays, and
since a thorough derivation would take us too far1. In a tight-binding represen-
tation of the system, the transmission coefficient between leadsp andq is given
by [2, 49]:

Tpq = Tr
[
ΓpGpqΓqG

†
pq

]
. (4.7)

The Green’s functionGpq in this expression is a submatrix of the Green’s function
G of the whole system: it contains only the elements ofG between sites in the
central device that connect to leadsp andq: in particular, ifPp(q) is a projection
operator onto the sites of the central device to which leadp (q) is connected, then

Gpq = PpGPq. (4.8)

The matrixΓp in Eq. (4.7) is the so-called broadening function of leadp. It is
given in terms of what is known as the self-energyΣp of the lead:

Γp = i
(
Σp − Σ†

p

)
. (4.9)

This self-energy is related to elements of the Green’s function between sitesat the
surface of the lead. The exact definition, and a more detailed discussion of these
self-energies will be given in the next section [see Eq. (4.13].

4.3 Lattice Green’s function method

One could have the impression that all has been said already about the Green’s
function technique: one just derives the tight-binding Hamiltonian of the system,
writes it out in matrix form, and calculates the Green’s function by inverting the
matrixE + iη − H. Physical quantities, like the transmission coefficients of the
Landauer-B̈uttiker formalism, can then be calculated by expressing them in terms
of this Green’s function.

However, since we are concerned with an open system (there are semiinfinite
leads connected to the sample), the tight-binding Hamiltonian matrix describing the
complete system has infinite dimension and cannot be inverted numerically. Fur-
thermore, even if one is able to truncate the Hamiltonian matrix, its direct inversion
turns out to be numerically very expensive. These issues will be addressed in the
current section. During the discussion, we will use quite often the notationGnn′ to
denote a submatrix of the total Green’s function matrixG. Gnn′ “connects” sites
of columnsn andn′, i.e.,

〈m,σ|Gnn′(E)|m′, σ′ 〉 = Gnmσ,n′m′σ′(E) = 〈nmσ|G(E)|n′m′σ′ 〉, (4.10)

where(m,n) label the sites in the tight-binding lattice, andσ, σ′ are the spin in-
dices.

1The interested reader can find such a derivation in Ref. [48].
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Figure 4.1: The influence of a lead can be described by adding its self-energy to the
Hamiltonian of the device.

4.3.1 Semiinfinite leads: Self-energy description

Within the Landauer-B̈uttiker formalism, the system is composed of a central de-
vice connected to leads (see Fig. 2.1), and its Hamiltonian can therefore be subdi-
vided as:

H = Hcd +
∑

i

(
H i

l + V i
ld + V i

dl

)
. (4.11)

Hcd is the Hamiltonian for the central device, andH i
l the Hamiltonian for lead

i. The coupling between lead and device is described byV i
ld (and its hermitian

conjugateV i
dl). A direct inversion

[
E + iη −H

]−1
to obtain the Green’s function

is numerically impossible, since everyH i
l has infinite dimension.

The standard way to resolve this problem consists of describing the lead in-
fluence by a self-energy term: it can be shown (see, e.g., Refs. [2, 31]) that the
central device, including the influence of the leads on it, is described by afinite-
dimensionalHamiltonian

Hcd = Hcd +
∑

i

Σi, (4.12)

whereΣi is called the (retarded) self-energy2 of leadi:

Σi = V i
dl g

i
l V

i
ld. (4.13)

The quantitygi
l in this expression is the Green’s function of the isolated semiinfinite

lead:gi
l = [E + iη −H i

l ]
−1. At first sight it seems that the problem is just shifted,

since now the calculation ofgi
l will involve the inversion of the infinite-dimensional

HamiltonianH i
l . However, since a nearest-neighbor tight-binding model is used,

the matricesV i
dl andV i

ld have nonzero elements only between sites on the surface
of the lead and their neighboring sites in the device. This means that only the
surface Green’s function (gi

l)11 is needed in Eq. (4.13) (see also Fig. 4.1), and

2In many-body physics, self-energy terms are sometimes introduced todescribe coupling of the
system to phonons or to describe many-body interactions [47]. In thesecases, the self-energies are
usually only calculated up to some order in perturbation theory, so that the Hamiltonian one obtains is
only an approximation. However, in our case the truncation of the device Hamiltonian by describing
the influence of the leads by their self-energies is exact: no approximations whatsoever are made.
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Figure 4.2: Attaching two isolated sections with Dyson’s equation to obtain Green’s
functions for the connected system.

the point is that several methods are at our disposal for calculating this Green’s
function: in the absence of a magnetic field it is known analytically [2], while
in the case of a magnetic field one can resort to several numerical methods (see,
e.g., Refs. [50, 51]). The particular method we have used will be explained in
Appendix B, in order not to drown the reader into a too dense technical discussion
at this point.

Now, if the central device comprisesC lattice sites, the HamiltonianHcd in
Eq. (4.12) can be represented by a2C × 2C matrix (the factor 2 arises from spin)
and the corresponding Green’s function can in principle be obtained from

Gcd =
[
E + iη −Hcd

]−1
. (4.14)

Nevertheless, the number of floating point operations necessary to invert a 2C ×
2C matrix scales as(2C)3, and therefore the inversion in Eq. (4.14) puts heavy
constraints on the numerically reachable system size. Fortunately, more efficient
recursive methods exist for obtainingGcd, and these will form the subject of the
next sections.

4.3.2 Recursive technique: Standard method

Recursive methods for the evaluation of Green’s functions are based upon the di-
vision of the device in smaller sections of which the Green’s functions can becal-
culated easily. These sections are then “glued together” by using the so-called
Dyson’s equation [47],

G = g + g V G, (4.15)

which allows to relate the Green’s functiong of two disconnected subsystems to
the Green’s functionG of the connected system, where V describes the hopping
between the subsystems.

Before embarking upon a detailed discussion of the recursive Green’sfunction
technique, we will illustrate the use of Dyson’s equation with an example, depicted
in Fig. 4.2. Consider a system consisting of two parts, and suppose that wehave
access to the Green’s functiong describing theisolatedparts. Now we would like to
obtainGN1, i.e., elements of the Green’s function between the first and last column
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of thecoupleddevice. This can be done by projecting Eq. (4.15) between columns
N and1:

GN1 = 〈N |G|1 〉 (4.16a)

= 〈N |g|1 〉 +
∑

|α 〉,|β 〉

〈N |g|α 〉〈α|V |β 〉〈β|G|1 〉 (4.16b)

= 〈N |g|n 〉 〈n|V |n+ 1 〉 〈n+ 1|G|1 〉 (4.16c)

= gNn Vn,n+1Gn+1,1. (4.16d)

Equation (4.16c) is obtained by noting that the hopping matrixV between the dis-
connected systems has only nonzero elements between columnsn andn+1 in our
nearest neighbor tight-binding model. Furthermore, we havegN1 = 0 sinceg is for
the disconnected system only. We can proceed now to find the unknownGn+1,1 in
Eq. (4.16d) by taking again the appropriate matrix elements of Dyson’s equation.
This procedure can be continued until we have found a closed set of equations. We
immediately write down the resulting equations:

Gn+1,1 = gn+1,n+1 Vn+1,nGn1, with (4.17a)

Gn1 = gn1 + gnn Vn,n+1Gn+1,1. (4.17b)

From these equations, we obtain:

Gn+1,1 =
[
1 − gn+1,n+1 Vn+1,n gnn Vn,n+1

]−1
gn+1,n+1 Vn+1,n gn1. (4.18)

Substituting this in Eq. (4.16d), we will get an expression forGN1 in terms of
Green’s functions for the isolated sections, which was our initial goal.

We now have enough technical luggage to proceed to the recursive Green’s
function technique [31, 52]. In the following, we will consider a central device dis-
cretized on a rectangular tight-binding lattice consisting ofM rows andN columns
(Fig. 4.3). The influence of the leads that are attached to this central device will be
described by their self-energy, giving rise to a finite-dimensional Hamiltonian Hcd

for the device, as discussed in the preceding section. It will be assumed that all
leads are attached at the left and right edges of the central device so that their self-
energies only influence sites of the first and last column of the device (depicted
gray in the figures). If this would not be the case, self-energy terms could introduce
an effective hopping between lattice columns that are not nearest neighbors, and in
this case the recursive technique cannot be applied: in the example above, V would
have nonzero contributions between columns different fromn andn + 1, leading
to much more complicated expressions in Eq. (4.16c).

A wide range of physical quantities of such a system can be written in terms of
the small subset of Green’s function matrices that is depicted in Fig. 4.3: it concerns
elements of the Green’s function between the first/last column of the device and any
intermediate column. The first step towards calculating these consists of separating
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Figure 4.3: Subset of device Green’s functions needed for calculating the physical
quantities of interest. Leads attached to the central device are depicted in gray.

the device in isolated columns, and calculating the Green’s functionGisol
ii for every

isolated columni = 1, 2, ..., N by doing a direct inversion:

Gisol
ii =

[
E + iη − 〈 i|Hcd|i 〉

]−1
, (4.19)

where〈 i|Hcd|i 〉 is the tight-binding Hamiltonian of columni. This step is depicted
in Fig. 4.4(a).

The next step consists of assembling the complete device by gluing together
the columns one by one, as shown in Fig. 4.4(b). Suppose we already have the
Green’s functionsGL

n1, GL
1n, GL

nn of a strip ofn columns connected together. The
superscriptL is added to denote the fact that they only represent a part of the de-
vice (namely a strip ofn columns), not the whole device. The Green’s functions
GL

n+1,1, G
L
1,n+1, andGL

n+1,n+1 for a section ofn+ 1 columns can then be derived
by projecting Dyson’s equation [Eq. (4.15)] between the appropriate columns, in a
similar way to what has been done in the simple example discussed above. We will
only state the end result here:

GL
n+1,n+1 =

[
1 −Gisol

n+1,n+1 Vn+1,nG
L
n,n Vn,n+1

]−1
Gisol

n+1,n+1, (4.20a)

GL
n+1,1 = GL

n+1,n+1 Vn+1,nG
L
n,1, (4.20b)

GL
1,n+1 = GL

1n Vn,n+1G
L
n+1,n+1. (4.20c)

Starting from the leftmost columnn = 1 withGL
1,1 = Gisol

1,1 , one can proceed in this
way through the whole sample and calculate theGL

n1,GL
1n andGL

nn for all n. After
connecting the last column, one obtains the Green’s function submatricesGL

N1 =
GN1 andGL

1N = G1N connecting the first and last column of the complete device.
These steps complete thestandardrecursive Green’s function method [31, 52],
and they suffice for describing transport quantities within the Landauer-Büttiker
formalism. Indeed, all leads are connected to the left or right edge of the system,
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Figure 4.4: Standard recursive technique. The device is divided into its separate
columns (a), and Dyson’s equation is used to glue them together and to find the rele-
vant Green’s functions (b).

and the relation in Eq. (4.7) thus expresses the transmission coefficients in terms of
the Green’s functionsGN1 orG1N .

Looking back at the Eqs. (4.19)-(4.20), one can see that the computational op-
erations necessary for obtaining the final Green’s functions are eitherproducts or
inversions of2M × 2M matrices, and the total amount of such operations is pro-
portional the lengthN of our system. Since the computational effort for a matrix
product or inversion scales as(2M)3 in the number of floating point operations, the
total numerical effort for the recursive technique scales asM3N for large systems
(N ≫ 1). In this way, we gain a factor ofN2 in efficiency compared to the direct
inversion of the complete(2MN) × (2MN) matrixE + iη − Hcd, which scaled
asM3N3. The price one has to pay for the increased efficiency is that one can
only calculate a smaller subset of Green’s functions (direct inversion would give us
Gnn′ for all n, n′).

4.3.3 Recursive technique: An extension

We have extended the standard recursive technique in order to obtain theadditional
Green’s functionsGNn,GnN ,Gn1,G1n andGnn depicted in Fig. 4.3. Having such
functions available will prove to be convenient in the next chapters.

We proceed as follows. After having completed the standard technique, westart
over from the Green’s functions of the isolated columns, and glue them together as
we did previously on the basis of Dyson’s equation, but now beginning from the
right column. This is depicted in Fig. 4.5(a). The Green’s functions we calculate
with every step areGR

Nn,GR
nn andGR

nN . They can be given in terms of theGR
N,n+1,

GR
n+1,n+1 andGR

n+1,N as:

GR
nn =

[
1 −Gisol

nn Vn,n+1G
R
n+1,n+1 Vn+1,n

]−1
Gisol

nn , (4.21a)

GR
Nn = GR

N,n+1 Vn+1,nG
R
n,n, (4.21b)

GR
nN = GR

nn Vn,n+1G
R
n+1,N . (4.21c)

Starting fromGR
NN = Gisol

NN , one can obtainGR
Nn, GR

nN andGR
nn for all n =
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Figure 4.5: Extension of the standard recursive technique. The isolated columns are
glued together, but now starting from the righthand side (a). The final step consists of
adding these strips of columns to the ones calculated in Fig.4.4 (b).

N − 1, N − 2, ..., 1. Again, the superscriptR has been added to denote that these
are Green’s functions for a subsection of the complete device.

The final step consists of attaching the previously calculated Green’s functions
GL andGR in pairs, as illustrated in Fig. 4.5(b). One attaches a strip of con-
nected columns1 to n (with known Green’s functionsGL

n1 andGL
nn) to the strip

of columnsn + 1 to N (with Green’s functionsGR
N,n+1 andGR

n+1,n+1), and this
is done for alln = 1, ..., N . Again, projection of Dyson’s equation leads to the
relevant mathematical expressions:

Gn1 =
[
1 −GL

nn Vn,n+1G
R
n+1,n+1 Vn+1,n

]−1
GL

n1, (4.22a)

G1n = GL
1n +GL

1n Vn,n+1G
R
n+1,n+1 Vn+1,nGnn, (4.22b)

Gnn =
[
1 −GL

nn Vn,n+1G
R
n+1,n+1 Vn+1,n

]−1
GL

nn, (4.22c)

GNn = GR
N,n+1 Vn+1,nGn,n, (4.22d)

GnN = Gnn Vn,n+1G
R
n+1,N , (4.22e)

Both these additional steps consist of doing a number of matrix multiplications
and inversions that scales linear inN . The numerical computation of the extra
Green’s functions with our extended recursive method thus has the same efficiency
as the standard technique.

Having access to these extra Green’s functions will prove to be very conve-
nient in the following chapters: it will allow us to obtain quantities like the current
density distribution, and furthermore, certain calculations can be done with greater
efficiency than with the standard Green’s functionsGN1 andG1N alone.
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